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In this paper, we discuss the evolution of the scattered intensity I(gq) during irreversible diffusion-
limited cluster-cluster aggregation. We propose a mean field model to describe the correlation among
different clusters that develops during the irreversible aggregation process. The model is based on
two coupled differential equations, controlling the growth of the average cluster mass and the time
dependence of the probability of finding pairs of clusters as a function of their distance. The model
predicts a moving and growing peak in the scattered intensity at a wave vector gm. For growing
compact clusters, as in the case of late-stage decomposition under deep-quench conditions, we recover
the expected results both for the scaling law of the scattered intensity, i.e., ¢4I(q/gm) = f(q/qm),
and for the growth of the average cluster mass. For growing clusters with fractal dimension Dy, the
model predicts no scaling for I(g), particularly in the initial stage of the aggregation. Only in the

late stages, an approximate scaling of the scattered intensity in qif I(q/gm) holds. We compare the
prediction of the model with the recent experimental results of Carpineti and Giglio [Phys. Rev.
Lett. 68, 3327 (1992)] on colloidal aggregation and with data from Brownian dynamics simulations.
The agreement between analytical and experimental results is excellent.

PACS number(s): 82.70.Dd, 64.60.Cn, 05.40.+j

I. INTRODUCTION

The process of supramolecular ordering, like the
growth of the minority phase in unstable binary mix-
tures or the growth of crystalline regions in a super-
cooled system [1,2], is characterized in Fourier space by
a wave vector ¢ and time t dependent scattered inten-
sity I(q,t). The shape of I(g,t) and its evolution dur-
ing the aggregation process convey information on the
leading aggregation mechanism [3-6]. For this reason,
a considerable interest, both theoretical and experimen-
tal, has been dedicated to the determination of I(q,t)
for several supramolecular ordering processes in the last
decades [3,4]. Often I(g,t) is characterized by a well de-
fined peak at the wave vector g,,. During the growth
process, the growth of the aggregates in mass and ra-
dius manifests itself in the growth of the peak amplitude
and in the shift of the peak position toward smaller and
smaller wave vectors. The scattered intensity at differ-
ent times can sometime be scaled on a common master
curve by plotting ¢%,1(q/gm) versus q/qm [3], suggesting
an underlying scaling in space and time of the ordering
process.

Cluster-cluster aggregation phenomena have also been
studied extensively, both theoretically and experimen-
tally, in the last decades. The simplest nontrivial clus-
ter aggregation model is the so-called diffusion-limited
cluster-cluster aggregation (DLCA) [7]. DLCA describes
a process of irreversible aggregation among noninteract-
ing freely diffusing clusters. When two different dif-
fusing clusters touch each other, they aggregate. The
newly formed cluster continues to diffuse. DLCA has
been shown to generate clusters whose average mass (M)
grows with time as ¢t* and whose bell-shaped cluster size
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distribution scales in time. Differently from the decom-
position case, DLCA clusters are fractals. None of the
extensive studies on DLCA had focused on the spatial ar-
rangement of the growing clusters, except for a (not well
known) suggestive but unsatisfactory one-dimensional
theory [8]. Not one of the several old computer simu-
lations of the DLCA model was ever scrutinized for the
existence of a characteristic length scale in the cluster-
cluster spatial arrangement, the real space analogue of
the scattered intensity peak. It came thus as a big sur-
prise the finding of Carpineti and Giglio, three years ago,
that the experimentally measured scattered intensity in
diffusion-limited cluster aggregation does display a peak,
which grows and shifts in g space during the aggrega-
tion kinetics. Carpineti and Giglio found that after an
initial regime, the measured scattered intensity seems to
scale exactly as predicted for late-stage decomposition
theories, if one substitutes the fractal dimension of the
clusters Dy to the space dimension d in the scaling plot.
The growth of the scattered intensity stops when the less
and less dense fractal clusters completely fill the avail-
able space, leaving in the frozen scattered intensity state
a memory of the growth process.

The experimental observation of Carpineti and Giglio
[9] were confirmed by the following experimental studies
on cluster-cluster correlation in two-dimensional systems
[10] and by computer simulations [11-14]. Even in the
two-dimensional case, a growing and moving peak in the
scattered intensity is observed. From the available real-
space images and from mass conservation [9,2,10], it was
conjectured that the peak was a manifestation in Fourier
space of the the depletion region, which develops around
the growing clusters. The description of the spatial and
time extent of such a depletion region, and the way it

4068 ©1995 The American Physical Society



52 IRREVERSIBLE DIFFUSION-LIMITED CLUSTER . ..

manifests itself in Fourier space, is the main point of
this paper. A preliminary paper was presented in Ref.
[15]. Here we give a more complete description of the
theory and analyze a variety of effects of cluster geome-
try, initial monomer concentration, etc., on the observed
development of the depletion zone.

The theory we present in this paper applies not only
to cluster-cluster aggregation kinetic, but also to ordi-
nary late-stage decomposition in the deep-quench limit,
i.e., when the cluster structure is compact and the lead-
ing aggregational mechanism is diffusion and coalescence
of clusters. We propose an analytic form for the struc-
ture factor and for its kinetic evolution as a function
of the starting droplet density, highlighting the common
features between late-stage spinodal decomposition and
cluster-cluster aggregation.

II. THEORY

Before formally introducing the equations that de-
scribe the evolution of the scattered intensity, it is worth-
while to examine a pictorial representation of the system
and its evolution during DLCA aggregation, as modeled
via two-dimensional computer simulations of DLCA. Fig-
ure 1 shows three snapshots, at different times, of a two-
dimensional Brownian dynamics simulation of freely dif-
fusing particles undergoing irreversible aggregation. The
top row shows the simulated system, while the bottom
row is an enlarged portion of the same configurations, to
visualize the fractal nature of the cluster structure.

From Fig. 1, one sees that clusters are surrounded by
empty spaces, appearing during the aggregation. The
sequence of full and empty spaces introduces a charac-
teristic length, which can even be picked by the eyes in
the top row of the figure. We also note that the clus-
ters have roughly the same size, in agreement with the
bell-shaped form of the cluster size distribution. On in-
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creasing the time, the size of the cluster increases but the
structure of the alternating regions with different density
is preserved.

To describe quantitatively the cluster-cluster correla-
tion observed in Fig. 1, we study the time evolution of
the mass concentration ¢(r,t) at distance r > 2R(¢) from
the origin, knowing that one cluster of mass M(t) and
radius R(t) is at the origin. In agreement with the basic
ingredients of the DLCA model, we assume that (i) ¢(r, )
changes only via cluster diffusion, i.e.,

3_6%;& = DV3¢(r,t). (1)
D is the diffusion coefficient of a cluster of mass M rel-
ative to the cluster fixed at the origin. We assume D
to be mass dependent (D = 2DoM~7). (ii) The mass
concentration at r = 2R(t) is zero, as imposed by the
irreversible aggregation, i.e., c(2R(t),t) = 0. (iii) The
growth of the cluster at the origin satisfies mass conser-
vation. The mass growth is controlled by the mass flux
at the moving boundary 2R(t), the sum of the radii of
the two coalescing clusters, i.e., '

dM ( Oc(r, t))
— =D {Sq—+ , (2)
dt or 2R(t)

where Sy is the surface term, equal to 2, 27wr, 47r? for
d =1, 2, 3, respectively. Radius and mass of the average
cluster are related via (R(t)/R(0))?’ = M(t)/M(0), al-
lowing the study of the equations for compact (Ds = d)
as well as for fractal clusters. To completely define the
system of Egs. (1) and (2), we chose as initial and bound-
ary conditions ¢(r,0) = co,r > 2R(0) and c(o0,t) = co,
reflecting the initial homogeneous state and the absence
of correlation between very distant clusters. ¢(r,t) is by
definition the product of the number density n(r,t) times
the average mass M (t) [16]. Expressing Eqs. (1) and (2)
in terms of n(r,t), we obtain

FIG. 1. Top row: Three different snap-
shots of a two-dimensional system of 32000
particles undergoing diffusion-limited cluster
aggregation. Clusters are allowed to diffuse

and rotate with a diffusion coefficient propor-
tional to the inverse of the mass. The initial
volume fraction is 0.013. The bottom row
shows the same data on a ten times bigger
scale, to highlight the cluster structure.
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on _ D2 T aM (3) The associated solution for the boundary motion is
at M dt’ 1/2
R(s) = As™/°. (10)
dM on . s
—— =DM\ S;— , (4) A depends only on the ratio ® between the initial solu-
dt or 2R(t) tion density and the density of the growing cluster. A is

with boundary conditions n(2R,t) = 0 and n(oco,t) =
noM (0)/M (t), and initial conditions n(r,0) = ng for r >
2R(0) [16]. By comparing Egs. (3) and (4) with Egs. (1)
and (2), one notes that ¢(r,t) changes only via diffusion,
while changes in n(r,t) are controlled by the usual cluster
diffusion process and by changes in the number of clusters
produced by the aggregational process.

Before analyzing the solutions of the model, we stress
that the description of the aggregation process proposed
is in terms of average quantities. The average mass
is a good candidate for the description of the aggrega-
tion process only when the cluster size distribution is
quasimonodisperse. This condition is not fulfilled in the
reaction-limited regime, in the DLCA regime at very high
initial monomer concentration, as well as in the initial
stage of DLCA aggregation when the memory of the ini-
tial monodisperse distribution is not yet lost. To deal
with such cases, the model has to be extended to take
into account the polydispersity. Such work is underway.

A. Compact clusters

Aggregation of compact clusters is particularly rele-
vant in the case of late-stage spinodal decomposition in
the limit of deep quenches, when a sample is quickly
transferred from the high temperature one-phase region
deep into the coexistence region. After an initial period
during which droplets of the minority phase are formed,
the separation process proceeds via diffusion and cluster-
ing of droplets. Under deep quench, separation proceeds
only along a path of decreasing total energy and cluster
breaking is very rare. In such conditions, mechanisms
like the evaporation condensation are less effective than
the mechanism of diffusion and coalescence of the entire
clusters, which we study here.

In the case in which the cluster structure is compact
(i.e., Dy = d), n(r,t) and M(t) can be calculated ex-
actly by performing a change of variable s = Dgt2/(2+7d),
corresponding to writing ds = D(M)dt, and noting the
analogy with the so-called moving boundary Stefan prob-
lem [17]. The solution is a function of the scaled variable
r/(2s%) (18],

M(0 F(r/(2s3
n(r,s) = o M§sg 1- (rl/:'((/\)z» , T2 2R(s) (5)
n(r,s) =0, r <2R(s). (6)

F(z) is given by

erfc(z), d=1 (7)
F(z) = { Bi(-2%), d=2 (8)
e_; — /merfc(x), d=3. (9)

obtained by inserting the solution for n(r, s) and R(s) in
Eq. (4) and solving the resulting equation. For d = 1,
2, and 3, respectively, A is given by the solution of the
following relations:

Vrerfe(A\)Aed =&, d=1, (11)
Ei(-A%)A%eN = -8, d=2, (12)
222eX [ — AVTlerfc()\)] = ®, d = 3. (13)

The growing cluster acts as a trap for the near clusters,
decreasing the probability of finding clusters nearby its
sticky boundaries. The scaling properties of the solu-
tion show that plots of n(r,s)M(s) versus r/s%5, or by
virtue of Eq. (10) versus r/R(s), for different s values
will collapse on a single master curve. We also note that
Egs. (3) and 4 satisfy mass conservation at all times.
The mass that was contained in the depletion region at
t = 0 coincides with the mass of the growing cluster, or
in terms of number density

/[n(r, 8) — n(oo, 8)]dr = —1 (14)

for all s values. Thus, for a fixed mass of the growing
cluster, the size of the depletion region will be larger
the smaller the initial density. This is shown in Fig. 2,
which displays the scaling function n(r,s)M(s) versus
r/R for three different initial monomer densities in the
d = 3 case. The analytic solution of the model also shows
that the growth of the radius of the average Euclidean
cluster is controlled by the same exponent as the growth
of the depletion region. The fact that the same scaled
variable controls both radius and size of the depletion
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FIG. 2. Scaled number density n(r,s) as a function of
r/R(s) in three dimensions for four different values of the
ratio ® between the initial solution density and the density of

the growing cluster. Note that when the density of the initial
solution is small, the size of the depletion region is large.
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region already suggests that the system is characterized
by only one characteristic length.

To make contact with the experimental results, we look
next to the behavior in Fourier space. n(r,t) is by defini-
tion the product of the average number density times the
radial distribution function [19]. The associated cluster
structure factor is [19]

S(g,8) =1+ /[n(r, ) — n(o0o, 8)]e*¥dr. (15)

At small g, we can expand the exponential term in the
right-hand side of Eq. (15) in a series. By using Eq.
(14) and symmetry considerations, we see that the lead-
ing term in the small g expansion is ¢2, as imposed by
mass conservation. Moreover, being n(r,s) a function
of the scaled variable r/2s%, also S(q,s) scales in time
in gs'/2 or, by Eq. (10), in gR(s). The total scattered
intensity I(q;t) measured experimentally can be approxi-
mated as the product of the previously calculated S(q,t)
and of the so-called cluster form factor P(g,t), a well
known function for any d [20]. P(q,t) takes into ac-
count the intracluster contribution to the scattered in-
tensity. Only in absence of correlation among clusters,
I(q,t) ~ P(q,t), being S(q,t) = 1. P(g,t) can be ex-
panded at low ¢ as P(q,t) ~ M(t)(1 — R2¢*/3), and at
high g values as P(q,t) ~ ¢~ (@1 where R, is the gyra-
tion radius of the cluster. P(q,t) is proportional to the
mass of the scatterer, i.e., in our case to the mass of the
average cluster and it is a function only of ¢R, i.e., of the
same scaled variable of S(q,t). This implies that the to-
tal scattered intensity will also be a scaled function of ¢R
and that a plot of I(qR(t))/M (t) versus gR(t) will show a
remarkable data collapse, of the same kind as observed in
late-stage spinodal decomposition [3]. From the limiting
behavior of S(g,t) and P(q,t), we have that at low g, the
total scattered intensity goes as ¢? , being controlled by
S(q), while at high q it goes as ¢~ (4+1) being fixed by the
decay of the form factor for objects with sharp interfaces.
It is important to note that P(q,t) does not depend on
the number of clusters in solution at any time. Thus,
differently from S(q,t), P(q,t) is independent from the
initial number density no. As a consequence, the scal-
ing function for I(g,t) will depend on ny. The smaller
the initial number density, the larger the depletion re-
gion and the smaller the ¢ vector at which a maximum
in the scattered intensity will occur. On lowering the
initial monomer concentration, the I(q,t) maximum will
eventually move out from the finite experimental window
[21].

From the solution of the differential equations, we also
calculate the value of the exponent z, controlling the
power-law growth of the mass. On going from s to ¢
and using M ~ R4, we find M(t) ~ 752 In three di-
mensions and with the v = 1/d value for Stoke-Einstein
diffusion, we recover the Smoluchowski result z = 1. It is
worthwhile stressing that the z = 1 value was obtained
by Smoluchowski using a time independent aggregation
probability. It is also worth observing that the M(t) de-
pendence we find is the same obtained from the Binder-
Stauffer diffusion-reaction mechanism for droplet coars-

ening [22], without imposing any ad hoc requirement of
self-similarity in the droplet configuration.

B. Fractal clusters

It is known that the growth of fractal clusters is lim-
ited in time and space. Fractal clusters tend to fill the
space, being characterized by an average density, which
decreases with the cluster size, i.e.,

p(r) = po(ro/r)*~P1, (16)

where po and 7o are, respectively, the density scale con-
stant and the monomer radius. When clusters reach a
space filling configuration, gelation occurs. One single
cluster fills up all the available space. When the grow-
ing cluster is a fractal, a new length scale related to the
average cluster size at the gelation point is expected to
arise. The change in time of the average cluster density
complicates the structure of Eq. (4). The relation be-
tween mass and radius gives now dM ~ R(Ps~1dR, an
R dependence that does not cancel any longer the sur-
face term in the right-hand side of Eq. (4). This extra R
dependence reflects the fact that the radius grows faster
than it would if Dy were equal to d. On the other end,
the diffusion of the fractal clusters is still happening on
an Euclidean substrate, so that no change in the char-
acteristic space-time relations are expected in the evo-
lution of the depletion region. The changes in the time
dependence of the cluster growth compared to the time
dependence of the growth of the depletion region, brings
as a consequence that the n(r,t) profile does not scale
anymore with R(¢). Figure 3 shows the numerical solu-
tion of Egs. (3) and (4) in the case d = 3 and Dy = 1.9
at different times. Differently from the compact cluster
case, M(s)n(r,s) versus r/R is now a function of time.
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FIG. 3. Scaled number density n(r,s) as a function of
r/R(s) calculated solving numerically Eqs. (3) and (4) in
the case of Dy = 1.9 and d = 3. Differently from the previ-
ous figure, the different curves refer to the same system but
at different stages of the aggregation process. Note that the
density profile n(r,s) becomes similar to a step function at
long times, when R(s) approaches Rjy.
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The decrease in average density of the growing clusters
requires a depletion region profile, which progressively
approximates a step function. In different words, while
in the compact case doubling the radius of the growing
cluster requires a doubling of the size of the depletion re-
gion; in the fractal case, the size of the depletion regions
has to increase less than two times the cluster radius,
because the average cluster density is also reduced.

On increasing the time, the intercluster distance be-
comes comparable with the cluster size. In this late-stage
regime, the profile of n(r) becomes very similar to a step
function and the cluster radius appear to be the only
typical length scale. Under such circumstances, which
appear close to gelation, an apparent scaling in gR(t) is
again expected. The numerical solution of the equations
shows also that during the initial stage of the growth pro-
cess, (when the intercluster distance is much bigger than
the cluster size) the flux of matter at R is proportional to
R?-2, as in the Euclidean case. Under such conditions,
from Eq. (4) one has RP7~'dR/ds ~ R?2, which imme-

D
diately gives R going as s"f‘l‘“r2 or M ~ tPfFN=0=2
the classical mean field exponent [7]. When the interclus-
ter distance becomes comparable to the cluster size, the
numerical solution of the equations shows a faster and
faster increase of the average mass, which diverges when
the average density of the fractal cluster becomes equal
to the initial monomer density.

Before comparing the prediction of the theory with nu-
merical and experimental results, we note that the model
we propose can be expressed in the case of fractal grow-
ing clusters in terms of a scaled variable © = /Ry, where
R; is defined as the radius of the cluster at gelation. Ry
depends only on the parameters in Eq. (14) and on the
monomer concentration at t = 0. We define Ry via

Ry
po('ro/r)d-Df'rd_ldr, (17)

poo(2Ry)* = [

7o

where po, is the density of the sample at ¢ = 0. The
important point is that it is possible to recast Eqgs. (3)
and (4) in the scaled variable © = r /Ry

m* s ., ntdM
o = PVen T g (18)
M, .

where D* = D/R%, X(t) = R(t)/Ry, and n*(z,t) is a
dimensionless number density. The corresponding ini-
tial and boundary conditions become n*(z,0) = 1 and
n*(00,0) = 1. The initial monomer density now appears
in the equations only through R;. Thus, the model pre-
dicts that at constant ratio R(t)/Ry, one should observe
the same scattering pattern, independently of no. This
brings as a consequence that the scaling form of the to-
tal scattered intensity in the gel state should be the same
independently from the initial monomer density, a pre-

diction that has been recently confirmed experimentally
[23].
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III. COMPARISON
WITH SIMULATION RESULTS

In this section we compare the predictions of the model
with Brownian dynamics (BD) simulations. The com-
parison with simulations results is particularly valuable
because it allows testing the cluster-cluster correlation
in real and Fourier space as well as the approximation
of the total scattered intensity as a product of the form
factor times the structure factor. We have performed
simulations only in one and two dimensions. Simulations
in three dimensions of comparable size are still too de-
manding from a computational point of view.

A. One dimension

We report in this section results in one dimension. We
have performed simulations in one dimension because
this offers the possibility of studying the aggregation pro-
cess both for compact and for fractal aggregates as shown
in the following. We simulate coagulating systems of NV
monomer of length one on a d = 1 continuum of length
L. The initially monodisperse distribution of monomers
is allowed to evolve in time performing BD, with time
step 0.01. At each step, touching clusters are joined irre-
versibly to form a new cluster of mass equal to the sum of
the old masses and length equal to the sum of the length
of the previous clusters to the power 1/D;. In such a
way, the fractal dimension of the clusters can be fixed to
any chosen value. D has been kept constant [D(M) = 1]
for simplicity. We report here the results for two differ-
ent simulations, one with Dy = d = 1, N = 10°%, and
L = 108, and one with Dy = 0.5, N = 5 x 104, and
L = 25 x 10%. In both cases, we observe that the clus-
ter size distribution evolves toward a bell-shaped scaled
function of the average cluster size, confirming that one
characteristic mass is present at each time. This is a par-
ticularly relevant issue, being one of the basic ingredient
of the model proposed in the previous section.

We calculate the structure factor Sgp(q,t), the cluster
form factor Ppp(g,t), and the total scattered intensity
Isp(g,t) from the simulation, according to the following

equations [24]:
> ; (20)

2

nc(t)
1 .
_—_— E lq(rc.m.k (t))
Sep(08) = () < = > e

> ; (22)

where r;(t) is the position of the ith monomer, r¢ m (%)
and my are, respectively, the center of mass and mass
of cluster k, and n.(t) is the number of clusters at time

N 2

1 rs
Isp(q,t) = ¥ < Zezq i(t)

=1

ne(t)

Ppp(g,t) = ']17 <Z

k=1

M

Z etari(t)

i=1
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t. The n(r,t) function has been determined by calculat-
ing all the center of mass cluster-cluster distances and
weighting each pair in the distribution with the product
of the cluster masses.

Figure 4 shows the comparison between the theoreti-
cal predictions, Egs. (5)—(10) and the simulation results
for the time dependence of the average mass and of the
cluster number density n(r,t). The left column debcribes
the case Dy = 1 = d and the right column Dy = 0.5 # d.
Figure 5 shows the form factor, the structure factor, and
the total scattered intensity for the same simulations. In
the compact case, the high g limit is ¢~2 as predicted
by a sharp one-dimensional interphase, while it goes as
¢~ D¢ in the fractal case. The scaled form factors shown
in the first row in Fig. 5 have been used, together with
the S(g,t) quantities calculated according to Egs. (5)
and (15) to obtain the theoretical total scattered inten-
sity data shown as lines in the last row. As predicted by
Eq. (5), the n(r,t) and S(q,t) data obtained from the
simulation collapse on the same curve once plotted as a
function of the scaled variable gR(t) or r/R(t) for the
Dy = d case, while no scaling is observed for the truly
fractal case. The agreement is excellent, especially if one
considers that there are no adjustable parameters. A few
considerations are in order: (i) The theory predicts very
well not only the initial stage of aggregation, but also the
gelation transition, shown in the steep increase of the av-
erage mass versus time in Fig. 4. (ii) The form factor
has a high ¢ behavior equal to g=2 = ¢—(4*1) in the com-
pact case and ¢~ %% = ¢~ D¢ in the fractal case. Below
gR = 1, the scaled form factor is almost constant and
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equal to (M?)/(M)2. (iii) The structure factor at low g
goes as g2. S(gR) is almost a constant equal to one for
gR > 1. (iv) The total scattered intensity is well repro-
duced by the product of the form and structure factor.
P(q) controls the high ¢ behavior, while S(g) is respon-
sible for the low ¢ part of I(g), as shown in Fig. 6. (v)
The normalization of the F(q) factor is given by the av-
erage mass. Superposition of the high g part of the total
scattered intensity [which as we said before is controlled
by P(q)] can only be achieved scaling the z axis by the
inverse of a length and the y axis by the same length to
the Dy power.

The low g behavior of the total scattered intensity pre-
dicted by our model is ¢ due to mass conservation. Dif-
ferences from the g% behavior can be observed in simula-
tions and in real experiments at very high volume fraction
and/or in the initial stage of the aggregation. Indeed, the
theory we proposed does not take into account the possi-
bility of initial thermal fluctuations in the monomer dis-
tributions, which contribute with a background to I(q).
If the average cluster size is small, then the contribution
to the scattered intensity at low ¢ may become compa-
rable to the signal arising from the depletion region, hid-
ing the ¢~2 behavior. For very high volume fractions,
when the average size of the cluster close to the gela-
tion point is very small, the thermal background could
also strongly affect the overall scaling of the scattered
intensity. Simulations are very valuable in showing this
effect, because they allow comparison of the development
of the total scattered intensity peak with different start-
ing conditions. The left side of Fig. 7 shows the low ¢

FIG. 4. Average mass as a function
of time (top) and scaled number density
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100 .
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time time

n(r,t)/n(oco,t) as a function of r/2R(t) for
different times (bottom). The full lines are
the predictions of the model while symbols
are results from the one-dimensional Brow-
nian dynamics simulation. The left column

n(r/2R)/n()

refers to compact growing clusters, the right
column to fractal (Dy = 0.5) clusters. Note
the scaling in n(r,t) in the case of compact
growing clusters
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behavior of I(g), calculated from a BD simulation hav-
ing a random distribution of nonoverlapping monomer
as the initial configuration. The right side of the same
figure shows the same quantity calculated from a BD sim-
ulation having a regular array of monomer as the initial
state. In both cases, I(g) at ¢t = 0, shown in open sym-
bols, is compared with I(q) when the average cluster size
is about six (filled symbols). As shown in the figure, the
low g% behavior may be completely masked by the initial
thermal fluctuations if the signal coming from the aggre-
gation process is not much larger than the initial thermal
scattering.

B. Two dimensions

We have performed also two-dimensional Brownian dy-
namics to simulate a coagulating systems of N = 32000
monomers of diameter one for different densities. This
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monodisperse distribution of monomers is allowed to
evolve in time performing BD, with scaled time step
2D,6t = 10~*, where D; is the diffusion coefficient of
the monomer. At each step, touching clusters are joined
irreversibly to form a new cluster. Clusters are allowed
to translate and rotate as rigid objects with transla-
tional and diffusional coefficient scaling with mass as
D(M ) = D;M~1. We have observed that for such choice
of v, the cluster size distribution evolves toward a bell-
shaped scaled function of the average cluster size, con-
firming that one characteristic mass is present at each
time. Figure 8 shows the behavior of the gyration ra-
dius as a function of the cluster mass at three different
concentrations. At high concentration (& = 0.3), the
fractal dimension is Dy = 1.65 £ 0.05; while at the two
lower concentrations (® = 0.06 and ® = 0.03) siinulated
systems Dy = 1.421+0.20 in agreement with previous esti-
mates [7]. Figures 8(b) and 8(c) show the cluster growth
dynamics. At the higher concentration the dynamics is

=
o
=
o
0.1 ¢ 4 0.1 ¢
0.01 1.00 100.00 0.01 1.00
q R(t) q R(t)

FIG. 5. Form factor P(q) (top), structure

factor S(g) (center), and total scattered in-
tensity I(g) = P(q)S(q) from the simulation
as a function of gR for the compact (right
column) and fractal (left column) case. Sym-
bols are from the simulation. Full line for
S(q) and I(q) are derived from the model.
P(q) and I(g) are scaled by the mass. Note
that P(0,t)/M(t) is slightly bigger than one,
due to the presence of a small polydispersity.

2gR(t)

Polydispersity has been taken into account
in the theory increasing the cluster density
in the analytical solution by (M?)/(M)?2.

l(GRYM(t)
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FIG. 6. Log-log plot of the scaled total scattered intensity
as a function of the scaling variable gR for the compact cluster
case in d = 1. Symbols are from the BD simulation described
in the text, lines are the analytic solutions for S(q) and P(q).
Note the predicted power-law behaviors at small and high ¢
values as well as the role respectively played by S(g) and P(q)
at small and high ¢ wave vectors.

very fast, the mass growth is not a simple power law,
and the size distribution is not characterized by just one
single size, as shown by the growing ratio of the first two
moments of the size distribution function. At lower con-
centrations, M (t) — M(0) ~ t* in the early stages and
then crosses over to a faster growth law on approaching

N

I(q)
)

-10
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-15

10 3
10 10

q q

FIG. 7. Total scattered intensity for two different samples
differing in the initial configuration. Left: I(g) for a ther-
mally equilibrated system, at ¢t = 0 when the average mass is
one (open symbols) and when the average mass is five (filled
symbols). Right: Same quantities but for a system prepared
originally in an ordered configuration. The line has a slope
two. Note the very low scattering at small g vectors at t = 0
in the second case, a reflection of the absence of spatial fluctu-
ations in concentration in the initial configuration. The figure
shows that the ¢® behavior, which characterizes the aggrega-
tion process can be masked by the initial thermal fluctuations.
This is particularly true during the very early stage of aggre-
gation (when the cluster mass is not much bigger than one)
or in very concentrated samples for which the average cluster
size at gelation is very small.
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the gelation point. z is slightly concentration dependent
and equal to about 0.6 at ® = 0.03. When M (t) ceases
to grow as t?, the ratio of the first two moments of the
size distribution function starts to increase.

Symbols in Fig. 9 are total scattered intensities for
® = 0.3 and ® = 0.03 at two different times. The lines
in Fig. 9 are the product of the form factor times the
structure factor as evaluated from Egs. (21) and (22).
The data in Fig. 9 show that (i) there is a peak in the
scattered intensity at all concentrations. At high concen-
tration, the amplitude of the peak is rather small, consis-
tent with the fact that just before gelation, the average
cluster size is small. (ii) The total scattered intensity is
well represented by the product of P(q) and S(q) only at
low density. This reflects the fact that at ® = 0.3 the
kinetics of aggregation never enters the regime of self-
similarity. The cluster distribution changes shape with
time, as shown in Fig. 8(b) and it is still polydisperse.
The aggregation process is so fast that there is no time
to forget the initial monodisperse distribution state and
crossover to the universal law for the cluster size distri-
bution. At lower densities, the kinetics is much slower,
and indeed I(q) is well described by S(q)P(q).

Figure 10 shows the numerical solution of Egs. (3)
and (4) in the case d = 2 and Dy = 1.4 at different
times. Differently from the compact cluster case, c(r,t)
versus 7/2R is a function of time. The decrease in aver-
age density of the growing clusters requires a depletion
region profile, which progressively approximates a step
function. On increasing the time, the intercluster dis-
tance becomes comparable with the cluster size. In this
late-stage regime, the profile, of ¢(r,t) becomes very sim-
ilar to a step function and the cluster radius appears to
be the only typical length scale. When the interclus-
ter distance becomes comparable to the cluster size, the
numerical solution of the equations shows a faster and
faster increase of the average mass, which diverges when
the average density of the fractal cluster becomes equal
to the initial monomer density. The time dependence of
the average mass is reported in Fig. 10(b). As found
from the BD simulations, at high initial densities, the
average mass growth is not described by a power law;
while at low initial density, a well defined region exists
in which M(t) ~ t*. The exponent z derived from the
theory increases slowly with concentration, starting from
z = 0.58 at & = 0.0001, in full agreement with the simu-
lation results.

Figure 11 shows the comparison between the theoret-
ical ¢(r,t) function (lines) and the same quantity eval-
uated from the BD simulation in the case of & = 0.03
(symbols) for two different times. c¢(r,t) from the BD
data has been determined by calculating all the center
of mass cluster-cluster distances and weighting each dis-
tance by the product of the cluster masses. Figure 11(b)
shows the structure factor and the form factor at the
same times, evaluated according to Egs. (21) and (22).
We note that while the form factor data do scale in the
scaled qR(t) variable, the S(g) data do not. This means
that the total scattered intensity, which is given by the
product of P(q) and S(g), will not scale in gR(t). Also,
the low g behavior of S(g) is given by ¢~2, as imposed by
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FIG. 8. Results from the
BD simulation in two dimen-
sions. (a) Average gyration ra-
dius as a function of cluster
mass. Clusters have been di-
vided in different bins accord-
ing to their mass. Rz has then
been calculated for each of such
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mass conservation. We also note that the low ¢ behavior
can be masked by the presence of trivial thermal fluc-
tuations, fluctuations also found in the nonaggregated
system (i.e., at ¢t = 0). The signal from the thermal
fluctuations becomes negligible only when the aggrega-
tion process has gone so far to produce a large (>> 1)
average mass.

IV. COMPARISON WITH EXPERIMENTAL
RESULTS

We compare now the predictions of our model with
the experimental results of Carpineti and Giglio [9] on
aggregation of polystyrene spheres in water. They ob-
served the formation of clusters with Dy ~ 1.9 for d = 3.
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FIG. 9. (a) Symbols: Total scattered intensity at two dif-
ferent times [t =1.1 (x) and t=3.7 (*)] at ® = 0.3. Lines:
P(q)S(q) for the same configurations. (b) The same for t =4.9
(o) and t=340 (O) but at & = 0.03. Note that in this case
I(q) is very well represented by P(q)S(q).

tions studied.

The scattered intensity shows a well defined peak that
moves in time. The kinetic process is separated in three
regions: an initial region where no scaling in qﬁf S(q/qm)
is observed (symbols in Fig. 12), an intermediate region
where scaling is observed (symbols in Fig. 13), and a sat-
uration region where no further change in the dynamical
structure factor is observed. On the basis of experimen-
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FIG. 10. (a) Scaled number density c(r,t)/c(co,t) as a
function of r/2R(t) calculated solving numerically Egs. (3)
and (4) in the case of Dy = 1.4 and d = 2. The different
curves show the density profile for different times, increasing
from right to left. Note that the density profile ¢(r, t) becomes
similar to a step function at long times. (b) The average mass
as a function of time for some of the concentrations studied:
& = 0.3, 0.06, 0.02, and 0.001.
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FIG. 11. (a) ¢(r,t) for Dy = 1.4 in d = 2 at two different
times. Symbols are from the BD simulation at t = 19.7 (o)
and ¢t = 409 (0O), full lines are from the theory at the corre-
sponding times. (b) S(g) and P(q)/M(t) from the simulation
[symbols are the same as in (a)] and from the theory (full
lines) as a function of 2qR(t) = ¢M(t)~*/Ps. Note the bend-
ing of S(q) at small g for the ¢t = 19.7 case, when the thermal
fluctuations are comparable with the scattering from the (still
small) aggregates. Note also that while the form factors can
be scaled in gR(t), the structure factor, depending on the
time development of the depletion region, does not scale in
qR(t). The total scattered intensity, given by the product of
I(q)P(g) obviously does not scale.

tal work, it is not possible, of course, to know the radius
growth law to scale data in gR as we have done in the
previous section. For this reason, experiments are pre-
sented in ¢/¢m, gm being the experimentally determined
position of the maximum in the total scattered intensity.
To make contact with the experimental work, we present
our data also in ¢/gm,, even if as shown later on in this
section, such a choice may obscure the absence of true
scaling for growing fractal clusters discussed in the pre-
vious sections.

We have calculated S(g,t) from the numerical solution
of Egs. (3) and (4) with Dy = 1.9. For P(q,t), we use a

q/a,,

FIG. 12. Comparison between experiments and theory in
the d=3 case: scaled I(q,t) at different times during the aggre-
gation process in the nonscaling regime. Symbols are experi-
mental data redrawn from [9]. The full lines are the prediction
of the model.
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FIG. 13. Comparison between experiments and theory in
the d=3 case: Scaled I(q,t) at different times during the ag-
gregation process in the scaling regime. Symbols are redrawn
from [9]. The full line is the prediction of the model when the
n(r) function can be approximated with a step function. The
inset shows I(g), S(g), and P(q) in log-log scale to highlight
the g% and the ¢~ '® behavior as well as the contribution of
P(q) and S(q) to I(q).

standard Fisher-Burford equation [25] ,

P(0)

PO = G Gryor

(23)

relating the gyration radius R, in this expression to R(t)
according to R2 = (3 — Dy + d)/(5 — Dy + d)[R(t)]?.
Equation (23) has been shown to give a satisfactory rep-
resentation of the experimental cluster form factor [26].
The validity of Eq. (23) is limited to g vectors smaller
than the inverse of the monomer size, above which one
should observe the scattering arising from the monomer
form factor. The experimental data that we compare
with are well within the region of validity of Eq. (23).
The volume fractions studied in the experiments range
between 3 x 1075 and 3 x 10~3, supporting the possibil-
ity of writing I(gq) as a product of S(g) and I(g).

The total scattered intensity, I(q,t) = S(q,t)P(q,t)
at selected times in the nonscaling regime is shown in
Fig. 12 and compared with the data from Ref. [9]. In

the scaling region the scaled q;‘,{ I(q/gm) are within a few

percent coincident with the qfn’ I(q/qm) obtained approx-
imating n(r,t) with a step function. The growth of the
cluster in this time region produces significant changes of
n(r,t) in real space, but only very minor changes in the
normalized n(r/R,t)/n(co,t) function. In this region, an
apparent scaling of qfn’ I(q/gm) has again been observed,
being the size the depletion region very close to the clus-
ter radius. The final qfl,.’ I(q/gm), calculated assuming a
step function shape for n(r,t), and Eq. (23) for the form
factor, is compared with the experimental data [9] in the
scaling regime in Fig. 13. The agreement between the
experimental data and the prediction of Egs. (3) and (4
is surprisingly good, both in the nonscaling and in the
scaling regions.
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We now come back to the topic of apparent scaling in
I(q) observed in experiments. On the basis of our an-
alytical calculation, we can calculate g,, exactly for all
times, and obtain the theoretical qfn’ I(q/gqm) behavior.
The result of such calculations in the pregelling regime
is shown in Fig. 14. The left panel shows the unnormal-
ized and unscaled I(gq,t) functions; the central panel of

Fig. 14 shows the correctly normalized qf,{ I(q/qm) ver-
sus ¢/¢m; the right panel shows the same data plotted

as q:nt (g/qbm) versus q/qom, where gp, is defined as the
best g values to obtain a fictitious scaling. The apparent
scaling observed in the right panel is made possible by
using a gp, value only a few percent different from the
true ¢,,, which, as shown in the central panel, would not
give a true scaling. Differences between g,, and gy, are
well within the experimental errors. This may explain
why close to gelation the experimental uncertainties in
the position of the maximum have suggested the pres-
ence of apparent scaling. In the late-stage regime, the
apparent scaling allows the calculation of the z exponent
from the experimental data, being I(g,t) ~ M (t). The
calculated value is z = 1 [9], consistent with the predic-
tion of our model, when for v the hydrodynamic regime
value 1/Dy is chosen.

Before concluding this section, we stress that the pres-
ence of a peak in the scattered intensity is independent
from the initial monomer density. The initial density only
modulates the position in ¢ space at which the peak will
appear. For very diluted concentrations, the depletion
region is so large that the peak appears well below the
experimental resolution of light scattering experiments.
On increasing concentration, the initial position of the
I(g,t) peak will move to higher ¢ values. This explains
why the peak in I(g,t) was only detected when fairly
concentrated samples were investigated.
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FIG. 14. Theoretical I(g,t) for Dy = 1.9 in d = 3 in the
pregelling regime [R(s)/R; = 0.56, 0.62, 0.68, 0.75, 0.83, 0.91,
and 1.0]. The same data are plotted as qﬁ’[(q/qm) in the
central panel and as qZ,fn I(q/qgsm) in the right panel. ¢, is
the position of the maximum of I(g). gsm has been chosen
as the “best” ¢ to maximize the agreement in the scaling
form. gum is only a few percent different from the true gm
value. The apparent scaling shown in the right panel is well
within the experimental error. This may explain why close to
gelation the experimental uncertainties in the position of the
maximum have suggested the presence of apparent scaling.
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V. CONCLUSIONS

In summary, we have discussed in detail a simple model
[15] to describe the origin and the development of the
spatial correlatations among clusters during DLCA. The
origin of the correlation is ascribed to the formation of
a depletion zone around the growing clusters [2]. From
the model, we have calculated the dynamic exponents
controlling the time dependence of the average mass and
of the radius of the aggregates, obtaining the same ex-
ponents predicted by the Smoluchowski equations [27].
Differently from the Smoluchowski equations, no a pri-
ori evaluation of the reaction rates kernels is required,
but only information on the dimension of the growing
cluster. We have also calculated the scattered intensity
and its evolution during the aggregation process. We
have shown that a peak in I(g,t) arises as a manifes-
tation in Fourier space of the existence of a depletion
zone around the growing clusters. The model shows that
I(g,t) truly scales, during the whole aggregation process,
only for compact growing clusters where correlations have
the same scaling behavior as the size of the growing clus-
ter. In both quantities, distance scales with reduced time
s as s2. Under such conditions, the T (g,t) can be scaled
as I(qR,t) ~ M(t)F(gR) ~ [R(t)]4F(qR). The function
F(gR) is not universal, but depends on the difference in
density of the cluster compared to the bulk density.

When the growing cluster is a fractal, as in DLCA, the
theory predicts an absence of scaling in the time devel-
opment of the scattered intensity. The reason for such a
difference is shown to arise from the different time scale
of R(t) and n(r,t). While cluster growth is controlled
by the fractal dimension, the mass diffusion is still con-
trolled by the dimensionality of the space in which dif-
fusion takes place. Only close to gelation, when clusters
are very close, the growth of the cluster takes over the
diffusional process and an apparent scaling is observed.
In this limit I(gR,t) ~ [R(t)]% F(gR). Differently from
the compact cluster case, the F'(gR) function is indepen-
dent of the initial monomer density, a prediction that
has been recently experimentally confirmed [23]. Sam-
ples with different initial monomer concentration are pre-
dicted to show the same scattering pattern if compared
at the same R/Rj value.

The theory we propose here only allows us to study
processes where a typical cluster size does exist and it
is not thus immediately extended to the early DLCA
stages, to DLCA in high concentration regimes, and
to reaction-limited cluster-cluster aggregation (RLCA).
This notwithstanding, we do expect in the RLCA regime
that the presence of an activation energy for aggregation,
which would reflect in our model in the modification of
the boundary conditions from sticky to partially adsorb-
ing [28], will cause a significant increase in the size of
the depletion region and the squeezing of S(g,t) toward
g = 0. On moving from DLCA toward RLCA, the I(q)
peak position will thus shift toward smaller and smaller
q values, eventually moving out from the available ex-
perimental window. Such behavior has been recently ob-
served [21,10]. Work in this direction is underway.

The colloidal aggregation process discussed in this pa-
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per, which leads to to formation of a gellike state in which
fractal clusters fill up the available space, is followed by
a much slower process of spatial reorganization of the
clusters. Such a slow process, very hard to study exper-
imentally in three dimensions due to the simultaneous
presence of the sedimentation process, seems to produce
an increase of the cluster fractal dimension. There is
evidence, both from experiments and simulations, that
the slow local arrangement of the monomers leads to the
formation of ordered microcrystalline structures. The ¢
vector range in which the signal coming from the micro-
crystalline ordering would appear is beyond the range
studied in this article.

Before concluding, we note that irreversible aggrega-
tion in the compact cluster case is strongly related to the
phase separation problem. Indeed, irreversible aggrega-
tion can be seen as a phase separation process in the deep-
quench limit (from infinite to zero temperature), when
separation proceeds only along a path of decreasing total
energy and cluster breaking is very rare. In such condi-
tions, mechanisms like the evaporation condensation are
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less effective than diffusion and coalescence of the entire
clusters. The M (t) dependence we find is the same ob-
tained from the Binder-Stauffer diffusion-reaction mech-
anism for droplet coarsening [22], without imposing any
ad hoc requirement of self similarity in the droplet con-
figuration. The ¢ and ¢~* limit in I(g,t) in the late-
stage decomposition in the deep quench also coincides
with the I(g,t) behavior during aggregation predicted by
our model in three dimensions. Our exact results support
the view that the scaling function is not universal and de-
pends strongly on the initial conditions and coarsening
process.
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